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Lattice distortions in magnetic fields

Miguel A N Araujo†
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, UK
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Abstract. A study is made of the stability of the possible lattice structures which result from
the magnetic-field-induced lattice deformation introduced by Araujo and Khmelnitskii. The
deformed lattice may either be the result of a single distortion occurring along a particular
direction or of a superposition of distortions in different directions. In a noninteracting electron
model the energy variation of the electron system will determine which final lattice structure is
the most stable. When electron interactions are considered in the Hartree approximation we find
that the energy variation of the electron system alone will not determine which final structure
is the most stable. The latter is then imposed by the lattice itself. If the distortion turns out to
be unidirectional then the corresponding charge-density wave should be weakly pinned even in
the absence of impurities.

The problem of the motion of electrons in a uniform magnetical field and periodic
electrostatic potential has been extensively studied over the years [1–4]. The electron
eigenstates are characterized by a quasi-momentumk associated with translation operators
which, in addition to a spatial translation of the lattice, also incorporate a guage
transformation [1, 5]. These operators are defined on a magnetic lattice (ML) which is
usually different from the real lattice (RL). The energy spectrum consists of Bloch bands
E(k). An important point is that the general properties of the spectrum (such as the
distribution of the energy bands) depend only on one parameter, the magnetic field flux per
unit cell φ/φ0, whereφ0 denotes the flux quantum. In particular, if the flux is a rational
numberφ/φ0 = p/q then the bands areq-fold degenerate [1, 5].

It has been shown in [6] that a two-dimensional system of Bloch electrons in a
perpendicular magnetic field may undergo a periodic lattice distortion (leading to a charge-
density wave) if the chemical potential is located at a Van Hove singularity of the density
of states and the magnetic flux per unit cellφ/φ0 is non-integer. The energy reduction
arises because the lattice deformation splits the initial Van Hove singularity into several
logarithmic singularities. The existence of the singularities follows from the periodicity
of the functionE(k). There must be saddle-pointsk∗ and in their vicinity the dispersion
relation has an expansion of the form

E(k) ≈ h̄2

2m+
(kx − k∗

x)
2 + h̄2

2m−
(ky − k∗

y)
2

where the effective massesm+ > 0 andm− < 0, for instance. Each saddle-point gives a
logarithmic contribution to the density of states:

√−m+m−
2π2h2

log
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whereW represents an energy scale which is or the order of the bandwidth. The perturbation
introduced by the lattice distortion shifts the energies of different saddle-points by different
amounts. This instability is a consequence of the ML and RL not having the same symmetry:
when the flux per unit cell is rational and noninteger, the RL has more symmetry than
the ML and this leads to the degeneracy of the energy bands. The ground state is then
obtained, under certain conditions, by lifting this degeneracy. From this point of view, the
phenomenon is comparable to the Jahn–Teller distortion of molecules.

The discussion in [6] concerned the case of a square lattice but it may be easily
generalized to other lattice geometries: ifφ/φ0 = p/q and the vectorsa, b define the
RL (not necessarily square) then one may define the ML using the vectorsu1 = qa and
u2 = b. The corresponding reciprocal lattice vectors shall be denoted bya∗, b∗, etc. The
single-particle dispersion relation has the property [5]

E0(k) = E0

(
k + 1

q
u∗

2

)
.

A lattice distortion having periodλ = 2πq/(j |a∗|) with j integer and not a multiple ofq,
creating the potential

V (r) = V cos(ju∗
1 · r) (2)

would cause the energies of different saddle-points ofE0(k) to shift by different amounts.
Furthermore, since we could also have chosen the vectors(a, qb) to define the magnetic
lattice, we see that it is also possible to have deformations with

V (r) = V cos

(
j

q
b∗ · r

)
. (3)

The period of the distortion is chosen so as to minimize the total energy, which is
proportional toI − U−1 [6]. This would fix the value ofj and the direction of the charge-
density wave if|a| 6= |b|. I is a parameter which includes the electron–phonon coupling and
the elastic properties of the material. The quantityU accounts for the screening of the lattice
distortion due to electron interactions. In [6] it was taken to be the 2D Fourier transform of
the Coulomb interaction (at the wavelength of distortion) but it may also include negative
correction terms which account for exchange and correlation effects [7, 8].

While the period of the deformation is thus fixed, by the second-order (in the amplitude)
contributions to the energy, the distortion can still occur along two or even three possible
directions if the vectorsa andb, defining the lattice, have the same length [9].

In this case, the question arises whether the distortion should occur along only one of
the possible directions or whether it should be a superposition of distortions in different
directions. In order to solve this problem it is necessary to calculate the contributions to
the energy variation to fourth order in the amplitude of distortion. It is found that in the
non-interacting electron picture the variation in energy of the electron gas determines the
structure of the deformed lattice. But when the electron interactions are accounted for in
the spirit of Hartree theory we find that the energy variation of the electron system does not
determine the final structure. The latter is then imposed by the lattice itself.

We shall consider the caseφ = φ0/2 in a square lattice of perioda, as in [6]. Generally,
a distortion with period, say, 2a would create the potential

V (r) = V1 cos
(π

α
x
)

+ V2 cos
(π

a
y
)

. (4)

The expansion of the variation in energy of the system in powers of the amplitudes must be
invariant under change of sign ofV1 or V2, or under the interchangeV1 ↔ V2. It follows
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that it must have the form

1E = (V 2
1 + V 2

2 )A + (V 2
1 + V 2

2 )2B + V 2
1 V 2

2 C + · · · (5)

which is the same as the Landau expansion of the free energy in the theory of ferroelectricity
[10]. It is then seen that ifC > 0 the distortion is unidirectional (V1 = V , V2 = 0), and
if C < 0 a bidirectional distortion, withV1 = V2 = V/

√
2, is preferred. It must be noted

that each of the coefficients in (5) is the sum of an electronic contribution (to be calculated
below) and a lattice contribution which could be obtained from a total energy calculation
of the deformed lattice (only the lattice contribution toA could be found from tabulated
elastic parameters).

The potential given in (4) will be treated as a perturbation on the partially filled band.
If V2 = 0 andV1 = V , the perturbation is diagonal ink-space and its effect on the state
k + ŷπ/a is identical to its effect on the statesk with V replaced by−V . If follows that if
the energy shift of the saddle-pointk∗ is expanded asη +bη2, with η ∝ V , then the energy
of the saddle-pointk∗ + ŷπ/a is shifted by−η + bη2. (η will be calculated in a simple
model below.) Also, if the effective masses are affected by the perturbation in such a way
that the prefactor of the logarithm in (1) for the pointk∗ is, after distortion,

√−m+m−(1 + αη + βη2 + · · ·)
then we simply have to make the changeη → −η for the pointk∗ + ŷπ/a. The other pair
of saddle-points can be treated in a similar fashion. The contribution ofk∗ to the variation
in energy is then proportional to

−√−m+m−
∫ W

−W

{(1 + αη + βη2 + · · ·) log |E + η + bη2| + (1 − αη + βη2 + · · ·)
× log |E − η + bη2| − 2 log|E|}f (E)E dE (6)

where f (E) denotes the Fermi–Dirac distribution function andW represents an energy
cut-off of the order of bandwidth. At zero temperature, integrals that contain a logarithmic
term have the following expansion:∫ 0

−W

E log |E + ξ | dE =
∫ 0

−W

E log |E| dE + Wξ − 1

2
ξ2 log

|ξ |
W

− ξ3

3W
− ξ4

8W 2
+ · · · . (7)

It should be kept in mind, however, that the logarithm only represents the nonanalytic part of
the density of states. There is also a background regular contribution which would modify
the coefficients of the simple powers in the expansion (7). This means that only the∼ ξ2

term can be meaningfully retained. At finite temperature the quantity log|ξ | is replaced by
logT and there are only small corrections to the coefficients of the other powers ofξ . The
contribution (6) to the energy is, to logarithmic accuracy,

η2 log
T

W
+ η4(b2 + 2αb + β) log

T

W
. (8)

If the distortion is bidirectional, theV2-term will introduce matrix elements between the
statesk andk + ŷπ/a. From the first-order perturbation theory we obtain

E(k) = E0(k) ±
√

|〈k|V̂1|k〉|2 + |〈k + ŷ(π/a)|V̂2|k〉|2. (9)

The treatment of the saddle-points can still be done, in this case, using the method explained
above. Now the changesη → −η correspond to choosing the+ or − sign in (9) and a
result analogous to (8) is obtained.
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It is seen from (8) that the fourth-order term inη is large asT → 0 and depends on the
modifications of the effective masses introduced by the distortion as well as on the nonlinear
displacements of the energy of the saddle-points.

We conclude that in the non-interacting electron picture the fourth-order terms in (5)
are large and logarithmic, and the quantitiesb, α andβ will determine the sign ofC, hence
the structure of the deformed lattice. The largeness of the logarithm is important because it
dominates the lattice contributions toC. The quantitiesb, α andβ should be calculated for
each model of the Bloch electron system. A calculation will be given below for the case
where the periodic potential can be treated as a perturbation on the Landau levels created
by the magnetic field. Taking the screening into account in the spirit of the Hartree theory,
we write, as in [6],

V = Vl + δn U (10)

and

δn = 4w2V [χ0 + V F ]. (11)

The parametersV1 and V2 in equation (5) should now be replaced byV1l and V2l .
Equation (10) expresses the fact that the potential felt by an electron is due to the lattice
distortion plus the potential created by the electron density change. Equation (11) is a
self-consistency condition and the qualityF can be obtained, in principle, by integration of
the electron density in the Brillouin zone in the neighbourhood of the saddle-points. But
from the previous discussion it should be clear thatF is proportional to logT , at most. It
has also been shown in [6] thatχ0 ∝ logT . Equations (10) and (11) enable us to expand
V in powers ofVl . Sinceη ∝ V ,

η = 1

1 − 4w2Uχ0
η` + 4w2UF

[1 − 4w2Uχ0]4
η3

l + · · · .

The variation of the energy of the electron liquid is equal to−Uδn2 [6] plus the terms
given in (8). Sinceχ0 ∝ logT , we see that, asT → 0, the coefficient of theη4 term goes
to zero as(logT )−3. This is a small quantity, so one should expect the lattice contributions
to C to dominate and determine the final structure.

We note that we have calculated1E to fourth order although the perturbation (4) was
treated, according to (9), only to first order. The corrections to the result (9) involve matrix
elements of the potential (4) between different bands. Another quantity,V/ε0, whereε0 is
the energy separation of the bands, would then be introduced in the problem. Second-order
perturbation theory inV would cause a quantitative, but not qualitative, change in the results
obtained. In particular, the numbersb andβ could be modified. Higher-order perturbative
treatment would be unnecessary becauseb andβ are related only to second-order(∼ η2)

effects.
For the purpose of illustration, we may use a model in which the lattice potential is

a weak perturbation on the lowest Landau level and Landau level mixing can be ignored.
Considering first a unidirectional distortion and allowing for a phaseφ in the potential (4),
the dispersion relation is

E(k) = E0(k) + v cos(aky + φ) (12)

with v = V exp(−π/4) [6]. The unperturbed wavefunctions, with energyE0(k), are given
by

ψk(r) = 1√
NL

∑
j∈z

e−i2ajkx ei(ky+2πj/a)yφ(x + l2ky + 2aj)
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whereL is the linear size of the system,l is the magnetic length,N = aL/(2πl2) and

φ(x) =
[

1

πl2

]1/4

e− 1
2l2

x2

.

According to (12) the saddle-points (kx = ± π
2a

, ky = 0) of E0(k), for instance, have
their energy shifted by

v cosφ − v2 sin2 φ

2h̄2

m+a2 − 2v cosφ
.

So the parameterη in (6) is η = v cosφ. The effective massm− is unaffected butm+ must
be multiplied by[

1 − η
m + a2

h̄2

]−1

which is then to be expanded in powers ofη. After treating the saddle-points(kx = 0,
ky = ± π

2a
) in a similar fashion, the following result for the variation in energy of the

electron gas is obtained:

1E ∝ v2 log
T

W
+ v4

{
(cos4 φ)

(
m+a2

h̄2

)2 [
1

4
tan4 φ − 1

2
tan2 φ + 3

8

]
+(sin4 φ)

(
m−a2

h̄2

)2 [
1

4
cot4 φ − 1

2
cot2 φ + 3

8

]}
log

T

W
. (13)

The ∼ v4 term shows thatφ = 0 is the most energetically profitable choice.
If the distortion is bidirectional then (9) gives

E(k) = E0(k) ± 1√
2
v

√
cos2(akx) + cos2(aky).

The four saddle-points are displaced by the same amount, equal tov/
√

2 ≡ η, and the new
valuesM+ andM− if the effective masses are

M+ = m+
1 − η

m+a2

h̄2

M− = m−
1 + η

m−a2

h̄2

.

It follows that the variation of the energy of the electron gas is

1E ∝ v2 log
T

W
+ v4 a4(3m2

+ + 3m2
− − 2m−m+)

16h̄4 log
T

W
. (14)

It is seen, from the results (13) and (14), that the gas would prefer a unidirectional distortion.
The electron interactions make the fourth-order terms become small∼ (logT )−3. If

C > 0 and the distortion is unidirectional, it is expected that the charge-density wave will
be weakly pinned because the expression (13) favours the phaseφ = 0. If impurities are
present in the system, they should also pin these charge-density waves, in analogy with
those systems which have a Peierls instability [11].
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